

Inter-Individual Variation in Response of VO₂Peak & Body Mass to Exercise Training

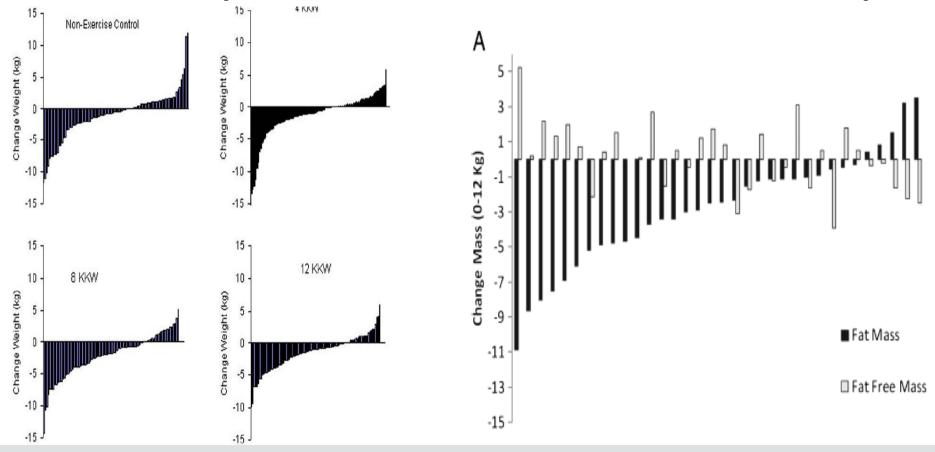
Philip Williamson MSc

HSCI, Teesside University

PhD Supervisory Team: Profs Alan Batterham & Greg Atkinson

P.Williamson@live.tees.ac.uk

Twitter: @philw80


Background to 'Precision Medicine' Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions

Claude Bouchard^{a,*}, Ligia M. Antunes-Correa^b, Euan A. Ashley^{c,d}, Nina Franklin^e, Paul M. Hwang^f, C. Mikael Mattsson^{c,g}, Carlos E. Negrao^{b,h}, Shane A. Phillips^e, Mark A. Sarzynski^a, Ping-yuan Wang^f, Matthew T. Wheeler^{c,d}

The mean response of a sample 'fails to recognize that there are considerable inter-individual differences in responses to any exercise program'

(Bouchard et al., 2014; p.21).

The Importance of a Control Group

Church et al., Sports Med. 2009;41:539 (2).

Caudwell et al., Med Sci Sports Exer. 2013;45:351 (3)

Therefore, we need data from a comparator group for reliable quantification of individual differences.

David J Bishop

@BlueSpotScience

Following

Looks like an impressive example of 'Individual Response to Training'....until you realise it is the control group buff.ly/2IDLylc

Individual Difference in Exercise Response: The "error" in the way

	Test-retest study	mean change = 10	mean change = 50	mean change = 100
mean	-3.7	10.6	52.7	104.1
SD _{diff}	168.8	174.3	165.4	169.4
TEM	119.4	123.3	117.0	119.8
Sample size	1000	1000	1000	1000
No. non-responders	762	739	658	535
% non-responders	76.2	73.9	65.8	53.5

All four of the above samples (including the test-retest sample) have <u>very similar</u> individual differences in VO₂peak response. This can be seen by the similar SDs of the change scores (SD_{diff}) of 165-174 ml/min. Now what researchers have been doing is counting how many people show change scores below a certain threshold increase (say <120 ml/min). This <u>"non-responder" threshold</u> is often selected as the <u>Technical Error of Measurement (TEM</u>) from the test-retest sample (<u>a mistake in itself</u>). Anyway, researchers get excited when they see more or less "non-responders" in certain samples. This is <u>not</u> necessarily a sign at all that individual differences in response are more or less in certain samples. In the above cases, it's simply just a reflection of <u>shifts in the whole distribution (including the tails) of change scores</u> as the sample mean changes. Note that the TEMs are also <u>very similar</u> between these samples. Therefore, <u>none of the samples show individual differences in VO₂peak response that are above those expected due to random within-subject variability over time.</u>

Are We Too Late?

Sports Medicine

August 2017, Volume 47, <u>Issue 8</u>, pp 1501–1513 | <u>Cite as</u>

Inter-Individual Responses of Maximal Oxygen Uptake to Exercise Training: A Critical Review

Authors Authors and affiliations

Philip J. Williamson , Greg Atkinson, Alan M. Batterham

Review Article

First Online: 17 January 2017

Shares

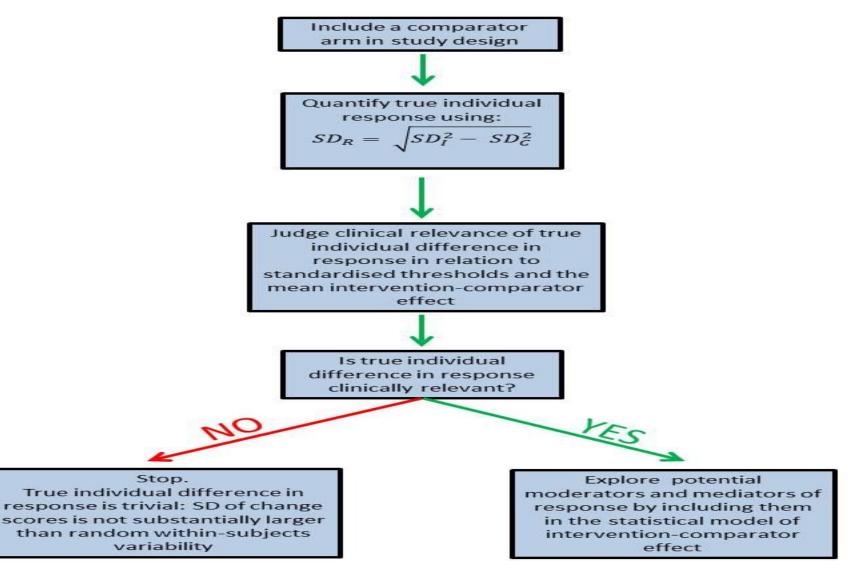
The mean response of a sample "fails to recognize that <u>there</u> <u>are</u> considerable inter-individual differences in responses to any exercise program"

(Bouchard et al., 2014; p.2).

- In previous individual differences in weight change studies, suitable comparator groups <u>STILL</u> typically absent, ignored, or the data are otherwise analysed inappropriately.
- 14 electronic databases searched for relevant studies up to March 2017.
- Search terms focused on structured training, RCTs and body weight.

- Results sifted these results for those RCTs (n=12, 1500 participants) that included relevant comparator groups.
- Standard deviations (SD) of weight change, and thereby the SD for true inter-individual differences in weight-loss for each study, were extracted.
- Prediction Interval (PI) for future studies was also derived.

- Pooled SD (95% CI) for true individual responses was <u>0.63</u> (-0.8 to 2.1) kg.
- The 95% prediction interval (based on 2 × SD) for true inter-individual responses was -2.0 to 3.3 kg.


The probability (% chances) that this individual response variability would, in a future study in similar settings, be clinically meaningful (>2.5 kg) is only 23%.

Model	Study name	Statistics for each study							Point estimate and 95% CI							Weight (Random)		
		Point estimate	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.0)0 -10).00	0.00	10.00	20.0	00	Relative weight		
	Baillot	-3.110	9,950	99.003	22.612	16.392	-0.313	0.755	-			+				0.18		
	Burtscher	-2.710	10.170	103,429	-22.643	17.223	-0.266	0.790	_			+				0.17		
	Church	0.950	1.930	3.725	-2.833	4.733	0.492	0.623			+					4.68		
	Dalager	1.480	1.440	2.074	-1.342	4.302	1.028	0.304								8.40 30.96 		
	Dognes	1.370	0.750	0.563	-0.100	2.840	1.827	0.068										
	Donelly	3.940	6.230	38.813	-8.271	16.151	0.632	0.527								0.45 5.32 		
	Lockwood	1.000	1.810	3.276	-2.548	4.548	0.552	0.581										
	Prabhakara	-1.490	1.890	3.572	-5.194	2.214	-0.788	0.430						4.87				
	Schmitz	0.430	1.340	1.796	-2.196	3.056	0.321	0.748		+					9.70			
	Tan	1.060	0.840	0.706	-0.586	2.706	1.262	0.207				+				24.68		
	Teixeira	-1.670	1.490	2.220	-4.590	1.250	-1.121	0.262			_	+				7.84		
	Vilela	0.000	2.510	6.300	-4.920	4.920	0.000	1.000			_					2.76		
Random		0.753	0.417	0.174	-0.065	1.571	1.805	0.071				+						

Future Directions

- A 'road-map' for future studies has been presented:
 - Inter-individual differences in response should be quantified properly and judged for clinical importance FIRST.
 - —If above is true, only then should moderators and mediators of response be explored for.

Future Research 'Road Map'

Atkinson & Batterham, Exp Physiol. 2015;100:577 (9).

Stop.

variability

Conclusions

- In HERITAGE and more recent studies, there are often no comparator samples.
- The inclusion of data from a comparator group is of principal importance
 - SD of change for intervention must be compared formally to SD of change in a control group or relevant test-retest reliability data
- Evidence is lacking for the notion that there are clinically important individual differences in exercise-mediated weight change.